Use the variation of parameters to solve the given nonhomogeneous system. x’=[[3,2],[-2,-1]]x+[[4e^(-t)],[e^(-t)]]

Use the variation of parameters to solve the given nonhomogeneous system.
Use the variation of parameters to solve the given nonhomogeneous system. x’=[[3,2],[-2,-1]]x+[[4e^(-t)],[e^(-t)]]

Solution:

x'=\begin{pmatrix}3&2\\ -2&-1\end{pmatrix}x+\begin{pmatrix}4e^{-t}\\ e^{-t}\end{pmatrix}\\

Here we have,

f(t)=\begin{pmatrix}4e^{-t}\\ e^{-t}\end{pmatrix}\\

A=\begin{pmatrix}3&2\\ -2&-1\end{pmatrix}\\

(A-xI) \:\:is, \\

\begin{pmatrix}3&2\\ -2&-1\end{pmatrix}-x\begin{pmatrix}1&0\\ 0&1\end{pmatrix}\\

=\begin{pmatrix}3-x&2\\ -2&-1-x\end{pmatrix}\\

Take determinant=0

(3-x)(-1-x)+4=0\\

x^2-2x+1=0\\

(x-1)^2=0\\

x-1=0\\

x=1………….Eigenvalue.


For\:\:\:x=1\:\:\left(A-xI\right)\:\:is,\\

\begin{pmatrix}3&2\\ -2&-1\end{pmatrix}-1\cdot \begin{pmatrix}1&0\\ 0&1\end{pmatrix}=\begin{pmatrix}2&2\\ -2&-2\end{pmatrix}\\

The system Ax=0 is,

\begin{pmatrix}2&2\\ -2&-2\end{pmatrix}\begin{pmatrix}x\\ y\end{pmatrix}=\begin{pmatrix}0\\ 0\end{pmatrix}\\

2x+2y=0...................x=-y\\

y=y ……………………….free variable.

The solution is,

\begin{pmatrix}x\\ y\end{pmatrix}=y\begin{pmatrix}-1\\ 1\end{pmatrix}\\

The eigenvector is,

v_1=\begin{pmatrix}-1\\ 1\end{pmatrix}\\


Find the generalized vector v_2\\

\begin{pmatrix}2&2\\ -2&-2\end{pmatrix}\begin{pmatrix}x\\ y\end{pmatrix}=\begin{pmatrix}-1\\ 1\end{pmatrix}\\

2x+2y=-1..................x=-y-\frac{1}{2}\\

y=y ……………………….free variable.

The solution is,

\begin{pmatrix}x\\ y\end{pmatrix}=\begin{pmatrix}-y-\frac{1}{2}\\ y\end{pmatrix}\\

For simplicity, choose y=0.

\begin{pmatrix}x\\ y\end{pmatrix}=\begin{pmatrix}-0-\frac{1}{2}\\ 0\end{pmatrix}\\

\begin{pmatrix}x\\ y\end{pmatrix}=\begin{pmatrix}-\frac{1}{2}\\ 0\end{pmatrix}\\

The eigenvector is,

v_2=\begin{pmatrix}-\frac{1}{2}\\ 0\end{pmatrix}\\


The solution to the homogeneous system is given by,

x_h=c_1e^{xt}v_1+c_2e^{xt}\left(tv_1+v_2\right)\\

x_h=c_1e^t\begin{pmatrix}-1\\ 1\end{pmatrix}+c_2e^t\left(t\begin{pmatrix}-1\\ 1\end{pmatrix}+\begin{pmatrix}-\frac{1}{2}\\ 0\end{pmatrix}\right)\\

x_h=c_1e^t\begin{pmatrix}-1\\ 1\end{pmatrix}+c_2e^t\begin{pmatrix}-t-\frac{1}{2}\\ t\end{pmatrix}\\

The fundamental matrix is,

M=e^t\begin{pmatrix}-1&-t-\frac{1}{2}\\ 1&t\end{pmatrix}\\

The inverse of M is,

M^{-1}=e^{-t}\begin{pmatrix}2t&2t+1\\ -2&-2\end{pmatrix}\\


The particular solution is given by,

x_p=M\int M^{-1}f\left(t\right)dt\\

x_p=e^t\begin{pmatrix}-1&-t-\frac{1}{2}\\ 1&t\end{pmatrix}\int e^{-t}\begin{pmatrix}2t&2t+1\\ -2&-2\end{pmatrix}\begin{pmatrix}4e^{-t}\\ e^{-t}\end{pmatrix}dt\\

x_p=e^t\begin{pmatrix}-1&-t-\frac{1}{2}\\ 1&t\end{pmatrix}\int e^{-t}\begin{pmatrix}10e^{-t}t+e^{-t}\\ -10e^{-t}\end{pmatrix}dt\\

x_p=e^t\begin{pmatrix}-1&-t-\frac{1}{2}\\ 1&t\end{pmatrix}\int \begin{pmatrix}e^{-2t}\left(10t+1\right)\\ -10e^{-2t}\end{pmatrix}dt\\

x_p=e^t\begin{pmatrix}-1&-t-\frac{1}{2}\\ 1&t\end{pmatrix}\begin{pmatrix}-5e^{-2t}t-3e^{-2t}\\ 5e^{-2t}\end{pmatrix}\\

x_p=e^{-t}\begin{pmatrix}-1&-t-\frac{1}{2}\\ 1&t\end{pmatrix}\begin{pmatrix}-5t-3\\ 5\end{pmatrix}\\

x_p=e^{-t}\begin{pmatrix}\frac{1}{2}\\ -3\end{pmatrix}\\


The general solution is given by,

x=x_h+x_p\\

x=c_1e^t\begin{pmatrix}-1\\ 1\end{pmatrix}+c_2e^t\begin{pmatrix}-t-\frac{1}{2}\\ t\end{pmatrix}+e^{-t}\begin{pmatrix}\frac{1}{2}\\ -3\end{pmatrix}\\


Final answer:

x=c_1e^t\begin{pmatrix}-1\\ 1\end{pmatrix}+c_2e^t\begin{pmatrix}-t-\frac{1}{2}\\ t\end{pmatrix}+e^{-t}\begin{pmatrix}\frac{1}{2}\\ -3\end{pmatrix}\\

Index
Scroll to Top