How To Find The Derivative Of An Inverse Function?
If the one-to-one function f(x) is continuous and differentiable then its inverse function f^{-1}(x) is also continuous and differentiable.
Inverse Function Theorem:
If f(x) is a differentiable function with an inverse function f^{-1}(x) on an interval where f'(x) is nonzero, then \left(f^{-1}\right)'\left(x\right)=\frac{1}{f'\left(f^{-1}\left(x\right)\right)}.
So at point x=a, the derivative of the inverse function is,
\left(f^{-1}\right)'\left(a\right)=\frac{1}{f'\left(f^{-1}\left(a\right)\right)} ……….(1)
Suppose the point (b, a) is on the graph of f(x),
So we can write, f(b)=a or we can write f^{-1}\left(a\right)=b\\
Substitute the value of f^{-1}\left(a\right) in equation 1.
\left(f^{-1}\right)'\left(a\right)=\frac{1}{f'\left(b\right)}\\
Examples of the Derivative Of An Inverse Function:
Example 1: Let f(x)=x^3+e^x, Then \left(f^{-1}\right)'\left(1+e\right) equals?
Answer:
f(x)=x^3+e^x\\
Substitute x=1 and check.
f(1)=1^3+e^1\\
f(1)=1+e\\
So the point (b, a) is on the graph of f(x).
Where a=1+e and b=1.
f(x)=x^3+e^x\\
Take derivative.
f'(x)=\frac{d}{dx}\left(x^3+e^x\right)\\
f'(x)=3x^2+e^x\\
Substitute b=x=1
f'(1)=3(1)^2+e^1\\
f'(1)=3+e
Now use the Inverse Function Theorem:
\left(f^{-1}\right)'\left(a\right)=\frac{1}{f'\left(b\right)}\\
Substitute a=1+e and b=1
\left(f^{-1}\right)'\left(1+e\right)=\frac{1}{f'\left(1\right)}\\
\left(f^{-1}\right)'\left(1+e\right)=\frac{1}{3+e}\\
Example 2: For the function f(x)=x^3+3\sin(x)+2\cos(x), find the value of \left(f^{-1}\right)'\left(2\right).
Answer:
f(x)=x^3+3\sin(x)+2\cos(x)\\
Substitute x=0 and check.
f(0)=0^3+3\sin(0)+2\cos(0)\\
f(0)=0+0+2\\
f(0)=2\\
So the point (b, a) is on the graph of f(x).
Where a=2 and b=0.
f(x)=x^3+3\sin(x)+2\cos(x)\\
Take derivative.
f'(x)=\frac{d}{dx}\left(x^3+3\sin \left(x\right)+2\cos \left(x\right)\right)\\
f'(x)=\frac{d}{dx}\left(x^3\right)+\frac{d}{dx}\left(3\sin \left(x\right)\right)+\frac{d}{dx}\left(2\cos \left(x\right)\right)\\
f'(x)=3x^2+3\cos \left(x\right)-2\sin \left(x\right)\\
Substitute b=x=0\\
f'(0)=3(0)^2+3\cos \left(0\right)-2\sin \left(0\right)\\
f'(0)=0+3-0\\
f'(0)=3\\
Now use the Inverse Function Theorem:
\left(f^{-1}\right)'\left(a\right)=\frac{1}{f'\left(b\right)}\\
Substitute a=2 and b=0
\left(f^{-1}\right)'\left(2\right)=\frac{1}{f'\left(0\right)}\\
\left(f^{-1}\right)'\left(2\right)=\frac{1}{3}\\
good explanation